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Abstract: Hydropower development in the tectonically
active and geologically complex Himalayan region requires
advanced geophysical methods capable of resolving
subsurface heterogeneity in rugged terrain. Two-
dimensional Electrical Resistivity Tomography (2D ERT) is
particularly effective in such environments due to its
adaptability, resolution, and ability to delineate
lithological and structural variations. In Nepal, ERT has
become an essential tool for assessing overburden
thickness, bedrock quality, aquifer characteristics, and
potential instability zones critical for hydropower
development. This study presents the application of 2D
ERT at the proposed Peaking Run-of-River (PROR)
hydropower project in the Mugu Karnali highlands of
western Nepal. Sixteen high-resolution resistivity profiles
were collected using the Wenner array with 56 m electrode
spacing to image the subsurface. The results reveal
distinct resistivity values from very low to very high (20 Q-m
- 4,500 Q-m) corresponding to colluvium, weathered
bedrock, and competent crystalline formations, including
schist, quartzite, and granitic gneiss. Fractured and
saturated bedrock zones were also identified, providing
insights into site stability and foundation suitability. The
resistivity models confirm that the project area possesses
competent bedrock conditions appropriate for key
hydropower structures. The successful application of ERT
in this high relief, folded, and thrusted Himalayan setting
underscores its reliability for geotechnical and
hydropower feasibility studies. These findings
demonstrate that integrating geophysical methods like ERT
into project planning enhances the accuracy of subsurface
evaluation and supports sustainable hydropower
developmentin rural Nepal.

Keywords: 2D Electrical resistivity tomography (ERT),
Wenner array, Peaking run-of-river, Hydropower.

Introduction

The Himalayan range, stretching over 2,400 km, has
been pivotal in advancing our understanding of
mountain belt formation, primarily driven by the
collision of continental plates (Argand, 1924; Dewey and
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Bird 1970; Powell and Conaghan, 1973; Le Fort, 1996;
Kohn, 2014). Rugged mountain regions serve as critical
components of the global hydrological system and are
often described as “natural water towers” due to their
capacity to capture, store, and release freshwater
(Viviroli and Weingartner, 2008). Tectonic convergence
in many of these regions has created high-relief, steep
terrains that offer ideal topographic conditions for
harnessing water’s kinetic energy. Although mountain
regions cover only about 32% of global river basin areas,
they contribute more than 60% of total discharge,
emphasizing their disproportionate role in water supply
(Viviroli et al., 2007).

Globally, several countries have effectively utilized
the topographic advantages of rugged terrain to
generate substantial amounts of renewable energy.
China’s Three Gorges Dam, the world’s largest
hydropower facility (22,500 MW) (USGS, 2018; Kumar,
2022; NS Energy, 2025) is situated in a steep gorge along
the Yangtze River. In South America, the Itaipu Dam
(14,000 MW), jointly operated by Brazil and Paraguay,
exploits the Parana River’s gradient and rugged terrain
to supply a substantial share of regional electricity.
Similarly, Europe’s Glendoe Hydroelectric Scheme in
the Scottish Highlands utilizes a 600-meter head across
steep mountainous terrain to generate 100 MW of
electricity (SSE, 2009). In South Asia, India’s Bhakra-
Nangal Dam, situated in the lower Himalayas along the
Sutlej River, utilizes the natural valley topography to
generate 1,325 MW (CWC, 2017). Likewise, the Upper
Tamakoshi Hydroelectric Project (456 MW), located in
the highlands of Dolakha District, capitalizes over 800
meters of hydraulic head from glacial rivers descending
steep Himalayan slopes (NEA, 2020).

Nepal presents a textbook example of how
mountainous topography facilitates hydropower
development. Nepal’s rugged terrain is intersected by
approximately 6,000 rivers draining a total area of
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194,471 km>. Of these, 33 rivers have drainage basins
exceeding 1,000 km?, offering a theoretical hydropower
potential of 83,000 MW, of which only about 2% has
been developed (Sharma and Awal, 2013; Alam et al.
2017), where 43000 MW is technically and economically
achievable (WECS, 2019). Nepal's hydropower potential
varies across its provinces due to differences in
topography. Nepal is divided into seven provinces,
among which Province 1 (Koshi) and Province 6 (Karnali)
have the highest potential, with capacities of 22,820 MW
and 17,799 MW, respectively. In contrast, Province 2
(Madesh) has the lowest potential, totaling only 341
MW). Nepal’s energy capacity surpluses to 3602 MW as
of 2025, March (economic survey 2025/2026), with the
continued expansion of electricity generation capacity,
Nepal is prioritizing the implementation of smart grid
technologies to decarbonize the energy sector, enhance
grid efficiency, and facilitate the integration of
renewable energy sources. As a part of this broader shift
toward sustainable and resilient clean energy, new
projects are being proposed on high terrain having high
gross head for a peaking run of river (PROR), which is
supported by geophysical investigations, including 2D
electrical resistivity imaging, to assess terrain suitability
for infrastructure development and this study will help
understand the feasibility of this hydropower project in
rocky topography.

Several geophysical techniques could potentially be
applied to investigate geological structures near the
surface (Epting et al., 2009). Subsurface geological
investigations are carried out for a range of purposes
including engineering construction, groundwater
exploration, seismic activity monitoring (Acworth, 1987;
Burger and Burger, 1992; Mukhopadhyay et al., 2006;
Satyabala and Bilham 2006; Hassan Imam et al., 2013),
geotechnical investigations (Suzuki et al. 2000; Kneisel,
2006; Chambers et al., 2006; Cardarelli et al., 2007;
Thompson et al., 2017; Lin et al., 2018), karst features
(McGrath et al., 2002; Khalil 2006), landslide slope
stability assessment (Jhinkwan et al. 2023; Sigdel et al.
2025) and few investigation focused on case studies of
dam inspections (e.g, Wise’n et al. 2000; Karastathi et
al., 2002; Al-Fares, 2011). Geophysical data have been
widely used in hydrology to find and map underground
geological structures such as fault zones (Rehfeldt et
al., 1992; Rubin et al., 1992; Hubbard and Rubin, 2000;
Lapenna et al., 2005; Singha et al., 2015; Soupois et al.,
2007; Colangelo et al. 2008; Gélis et al. 2010; Binley et
al., 2015). The adoption of modern geophysical
techniques in  mountain geomorphology has
accelerated due to their efficiency, minimally invasive
nature, and capacity to deliver high-resolution
subsurface information relative to conventional drilling
(Demanet et al., 2001). Advances in acquisition and
processing now permit precise characterization of near-
surface lithology in structurally complex terrains
(Kneisel, 2006), substantially expanding the analytical
and applied potential of geophysical investigations
(Huayllazo et al., 2023; Nassim et al., 2024). Different
geophysical tools have been adopted for studying the
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hydropower potential in Nepal Himalaya, among them
2D ERT is highly applied techniques in identifying the
feasible location for the hydropower components. Pant
(2005), Ghimire et al. (2017), Lamsal et al. (2020)
Takamte et al. (2022) used the 2D ERT method to
delineate subsurface geological structures for
hydropower studies. Silwal and Paudyal (2018) also
used this method to identify the subsurface lithology of
Dotigad hydropower project with different hydraulic
components. Adhikari et al. (2019), Mebrahtu (2019),
Srivastava et al. (2022), and Acharya et al. (2023) also
used this technique for investigating the subsurface
geology for hydropower dam site suitability and
rehabilitation.

Despite considerable advancements in hydropower
exploration across Nepal, the remote Karnali province
remains largely under-investigated, and its subsurface
characteristics pertinent to energy development are
poorly constrained. While hydropower feasibility
studies have proliferated in more accessible regions,
detailed geophysical assessments in Karnali are sparse,
and no systematic Electrical Resistivity Tomography
(ERT) investigations have been conducted along key
river segments. In this study, ERT has been applied to
selected sites along the Mugu Karnali River to
characterize subsurface lithologies, identify fractured
or weathered bedrock, and assess geotechnical
stability. The resulting high-resolution subsurface
models not only inform local hydropower feasibility but
also provide insights into broader geological and
hydrogeological conditions of the region, offering a
framework for future energy development and
geotechnical investigations in similar underexplored
segments of Karnali.

Study Area

Geology of the Area

The Mugu Karnali valley (Figure 1) extends
approximately E-W and offers about 30—-40 km of almost
uninterrupted exposure of the primary tectono-
metamorphic units (Montomoli et al. 2013). The project
area is located within the Higher Himalayan Sequence
(HHS) and is near the Main Central Thrust (MCT) zone.
The Galwa Tectonic Window is surrounded by a
geological formation dominated by two-mica gneiss,
quarzitic gneiss, quartzite, garnet-kyanite-mica schist
or gneisse, amphibolite, and calc-gneiss of the Higher
Himalaya. Above this sequence lies a thick layer,
extending several thousand meters, consisting of
granite-gneiss, migmatite, paragneiss, and carbonate
rocks. Kyanite, typically found in the lower parts of this
sequence, transitions to sillimanite in the higher
elevations (Fuchs, 1974). In the northern part of the
Higher Himalayan crystalline region, there is an
intrusion by Mugu Granite (Hagen, 1969).

The Mugu Granite exhibits a medium-grained texture
characterized by hypidiomorphic crystals. Notably, it
contains twinned and zoned microcline phenocrysts,



Asian Journal of Engineering Geology, 2025, Vol. 2 No. 1, 41-58

(a) 8E [ Transhimalaya Batholiths (TB) & Kohistan @ NEPAL [ Tethyan Sedimentary Sequence (TSS)
P = High Himalayan Leucogranites (HHL)
5 Indus Tsangpo Suture Zone (ITSZ) A £ [E8Greater Himalayan Sequence (GHS)
£ [ Tethyan Sedimentary Sequence (TSS) N $0ELesser Himalayan Sequence (LHS)

~ [ESiwalik Himalaya (SH) proel
[JQuaternary alluvium

/ Thrust ©® Main City

e \Normal fault A Mountain peak

E"-Greater Himalayan Sequence (GHS)
=] Lesser Himalayan Sequence (LHS)
[_JSub-Himalaya (SH, Siwalik and molasse)

Annapurna

Manaslu Bhutan

500 km Kathmandu ) arjecling o
ul"x»; wlre S0°E 87 S4°E 86°E SE°E
Tethyan Sedimentary Sequence (TSS Main Central Thrust g
low grade limestone an areniteg; ) L Zone (MCTZ) 1 A IEI
Everest Series (ES, Grt-Crd+St gneiss, i
marble andﬁeucogranitic dykgne); r—~ S°“"‘5Ty‘s':§},‘§’{§’ﬁ‘§§§‘"‘°“' N
- High Himalayan leucogranite (HHL, " : " "“-23,
Bura Burl & Mugu granites); NG ﬁﬂi‘; (;ngl‘_';%ral “?%
Greater Himalayan Sequence (GHS): ) 55 o s
Sil-Kfs migmatite and minor Cpx X main foliation (Sp)
GHSU calcsilicate; Tiyar SZ mylonite (a);
@ Sil-Wm mi%\r/?atitic aragneiss and /5 main lineation (Lp) 4800,
micaschist; Mangri SZ mylonite (B);

Sil/Ky paragneiss, micaschist, amphibolite, minor thrust fault
-Cpx-Amph calcsilicate and anatexite; "
/ minor strike-slip

-Onhogneiss locally anatectic;
GHSL & normal fault
Grt-SUKy mi?aschist and paragneiss, )
I:mmor calcsilicate; e Samples location
-Quarlzile, phyllite, Ulleri-type orthogneiss (y) ©  Samples in Montomoli ef
Lesser Himalayan Sequence (LHS): al.(2013)

- Grt-Chl phyllite, quartzite, minor Main village
metabasite; =

I:] Phyllite, quartzite, minor metabasite;

Marble, dolomitic marble, graphitic
schist;

82°10°0"E 82°15°0"E 82°20°0"E 82°25°0"E 82°30°0"E 82°35°0"E
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reported; (b) geological map of the Nepalese Himalaya (after Montomoli et al. 2013 and references therein). The
Mugu Karnali valley (study area) is shown; (c) Tectono-metamorphic map of the Mugu Karnali valley (Western
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some reachinglengths of up to 1 cm, which encapsulate
plagioclase, biotite, muscovite, and sporadic
occurrences of sillimanite oriented parallel to the zoned
peripheries of potassium feldspar (K-feldspar) (Fuchs,
1977). The boundary between the Mugu Granite and the
migmatite complex is gradual rather than distinct.
Migmatization processes were partially influenced by
the intrusion of the Mugu Granite, evidenced by
migmatites hosting older augen gneisses and some
paragneisses intersected by folded veins of granite.
Conversely, the granite itself contains numerous
xenoliths of augen gneiss (Fuchs, 1977).

The Higher Himalayan Sequence (GHS) is positioned
above the Lesser Himalayan Sequence (LHS) and serves
as the metamorphic core of the Himalayan mountain-
building process. The LHS is bordered to the south by
the Main Boundary Thrust (MBT) and to the north by the
Main Central Thrust (MCT), both of which trend
approximately northwest-southeast and dip towards
the northeast, roughly perpendicular to the mountain
range's orientation (Colchen and Le Fort, 1986; Le Fort,
1975). The uppermost layer of the granite is composed
of a sequence including calc-gneiss, marble,
calcschist, and calc-phyllite. These rocks belong to the
lower section of the Dhaulagiri Limestone, with a
decrease in metamorphic grade observed as one move
upwards in the stratigraphy. The Higher Himalayan
crystalline in this region exceeds a thickness of 10 km
(Fuchs, 1974).

The proposed site lies in Mugu District of Karnali
Province (Figure 2). The project layout consists of a 27 m
high gated barrage, 16497.26 m, and a 7 m diameter in
horseshoe shaped tunnel on the right bank of the river,
a 20 m Dia and 66.49 m high surge shaft (circular
concrete-restricted  orifice type) and surface
powerhouse: housing four generating units of 70.59
each. The proposed run-of-river project is a high head
project with an installed capacity of 306 MW, whichis in
Mugum Karmarong Rural Municipality and Chhayanath
Rara Municipality shown in Figure 2. The headworks
area is located at Mugum Karmarong Rural Municipality
ward number 3 and powerhouse area is located at
Chhayanath Rara Municipality ward number 12. The
proposed project lies between 82°13' 45" Eto 29° 32' 46"
N and 82°25'55" E to 29° 35' 50" N.

Stratigraphy
Stratigraphically, the project area is divided into the
following units (Figure 3).

Lumsa Unit

This unit is exposed around Lumsa Village and falls into
Lesser Himalayan Sequence separated from Higher
Himalayan Crystalline by the MCT. The lithology of the
unit consists of thinly foliated, fine-to medium-grained,
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slightly to moderately weathered grey schist with
intercalated thin-bedded, medium-grained, moderately
weathered light grey micaceous quartzite containing
quartz veins. The mineral assemblage includes quartz,
feldspar, mica, and garnet. The thickness of this unit
exceeds 3 km.

Chhaila Unit

This unit falls under Higher Himalayan Crystallines
above the MCT. The rock types include schist and
quartzite with occasional concordant intrusion of
amphibolite. The schist contains abundant garnets of
size up to 1 cm. Kyanite flakes are also developed on
quartzveins. Malachite mineralizationis also presenton
quartzite at some localities. The thickness of this unit is
4.5 km.

Mangri Unit

This unitis widely distributed around Mangri Village. The
lithology consists of thin-to medium-foliated, thin-to
thick-banded, coarse-grained, slightly weathered,
medium strong to strong light grey granitic gneiss with
partings of weak grey mica schist. The mineral
assemblage consists of quartz, feldspar, mica, and
tourmaline in granitic gneiss. Schist contains quartz,
feldspar, and mica. The thickness of this unitis 5.5 km.

Darima Unit

This unit is well exposed around Darima Village at road-
cut sections, river-cut sections and hills and ridges. The
rock types include medium-to massive-bedded,
coarse-grained, jointed, moderately to slightly
weathered, grey and pink quartzite with coarse-grained,
moderately weathered weak grey schist partings. Steep
cliffs are developed due to the presence of strong
quartzites at this unit. The thickness of this unit is 1.5
km.

Pulu Unit

This unit is well exposed around Pulu Village. The
lithology consists of thin- to medium-foliated, coarse-
grained, thick to massive-banded, slightly to faintly
weathered grey banded gneiss with migmatite, granitic
gneiss and occasional thin-bedded grey quartzites. The
strata are generally north dipping. Quartz boudins and
M-type folds are abundant on quartz veins which are
both parallel and oblique to foliation planes. The
thickness of this unitis more than 1.2 km.

Methodology

ERT survey

Electrical resistivity methods have wide advantage of
efficiency and adaptability to topography and become a
mature tool for subsurface study (Wu et al. 2023).
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Figure 3, Engineering geological maps and geological cross-section along the project area.

Geophysical methods have a wide range of applications
in locating or tracing an object of interest as suggested
by the geophysical response to the object. In ERI
surveys, electrical resistivity is recorded (measured in Q
m), representing the reciprocal of electrical
conductivity. Resistivity Imaging is a geo-electrical
method utilized for acquiring detailed 2D and 3D images
of intricate subsurface geology (Griffiths and Barker,
1993). This technique involves deploying various
electrode configurations such as Wenner,
Schlumberger, dipole-dipole, pole-dipole, pole - pole
(Dobrin, 1982). In surface ERT applications, electrodes
are often installed in a straight-line arrangement using
multicore cables. The Wenner array method was
selected because of its strong resistance to noise and
reliability in outlining horizontal subsurface features
(Falae et al., 2019). According to Dobrin (1982), the
method detects changes in subsurface geology by
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evaluating the apparent resistivity, which indicates
variations in electrical resistivity. Samouélian et al.
(2005) offer an in-depth explanation of the theory and
fundamental principles underlying ERT.

The fundamental principle of ERT relies on the
varying electrical conductivity of subsurface materials,
which is influenced by numerous factors. These factors
include rock type, porosity, permeability, pore
connectivity, temperature, salinity, cation exchange
capacity, clay content, the nature of fluids or water
present, degree of weathering, presence of fractures or
faults, discontinuities (Hao et al., 2002; Tejero et al.,
2002; Kim et al., 2007; Garcia-Moreno and Mateos 2011;
Cardarelli etal., 2010; Ha et al., 2010; Lech et al., 2020),
rock associations, deformation, and water-rock
interactions or alterations. (Aizebeokhai et al., 2010,
Hasan et al., 2018, Hung et al., 2020). In hard rock
terrains, electrical resistivity can vary over a large range
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depending on weathering degree, water saturation, etc.
(Hasan et al.,, 2020). ERT generates an image of
subsurface resistivity, which can be interpreted to infer
different lithologies or rock types based on their
resistivity contrasts (Hasan et al. 2020). The outline of
the methodology for subsurface characterization is
given in the flow chart (Figure 4).

INPUT INFORMATION

GPS DATA
GOOGLE EARTH IMAGE

FIELD RECONNAISAINCE
PUBLISHED LITERATURE

ERT PROFILES LINES

16 PROFILES ALONG THE HYDROPOWER COMPONENTS
Dam (Head Works). Tunnel Alignment, Penstock Alignment, Powerhouse

RESITIVITY IMAGING

DEPTH, MATERIAL
CHARACTERISATION AND
LITHOLOGICAL UNITS)

CLASSIFICATION &

RESITIVITY INVERSION
LAYERING STRATA

Figure 4, Methodology flow chart for subsurface
characterization.

Data acquisition and processing

Data acquisition was carried out by using equipment
known under the brand name GEOMATIVE GD10
SUPREME 2D PLUS MULTI-ELECTRODE RES/IP
IMAGING SYSTEM manufactured by GEOMATIVE CO.,
LTD., China. The ERT imaging setup is depicted in
Figure 5. During the investigation, 60 electrodes were
linked by two cables, spaced at 5 m distances arranged
in straight lines (Cubbage et al., 2017) giving maximum
of 300 m length following the guideline set by Loke and
Barker (1996). A total of sixteen ERT profiles were used
for site characterization, denoted as ERT-1to ERT-16. To
reduce electrode spacing errors, two technicians
verified electrode placement before each survey, and
salt water was applied to improve ground contact. A
reconnaissance survey ensured equipment and
configuration reliability. In noisy areas, measurements
were repeated 2-3 times for accuracy. Topographic
elevations and geographic coordinates were recorded
by total station at each electrode for spatial referencing
and model correction (Table 1).

The instrument is fully automatic and designed to
measure apparent resistivity as well as induced
polarization of the subsurface materials. In a noisy area,
the signal is significantly enhanced by stacking data
measured in many cycles (4-10 stacks). It consists of
three main units all housed in a single casing: the
transmitter, the receiver, and the microprocessor. The
electrically isolated transmitter sends out well-defined
and regulated signal currents.
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Figure 5, Schematic diagram of a multi-electrode
system, and a possible sequence of measurements to
create a 2-D pseudo section. (modified after Loke et al.,
2013).

The receiver discriminates against noise and
measures voltages correlated with transmitted signal
current. The microprocessor monitors and controls
operations and calculates results. The apparent
resistivity is calculated automatically and displayed in
digital form. Stainless steel electrodes (30 cm long)
were used for both current transmission and voltage
receiving. These electrodes were grounded in each
profile and related to the Geomative GD-10 by specially
designed CA30 ERT cables.

The inversion routine employed by the RES2DINV
program relies on the smoothness-constrained least
squares method (De Groot-Hedlin and Constable, 1990;
Saski, 1992). Pre-processing of data to obtain a high-
quality data set is followed by tomographic inversion.
Data inversion code is another main component of the
2D-ERT method. A popular inversion algorithm,
RES2Dinv, created by Loke and Barker (1996) and
improved by Loke et al., 2003, works using a least-
squares method with smoothness constraints.
Geological interpretation of the resistivity tomogram is
based on geometry along with resistivity values of such
layers  and/or  patches. Surface  geological,
hydrogeological, geomorphological information play
key roles during the interpretation of the resistivity
tomograms and are interpreted with reference to
established resistivity (Figure 6).

To improve the clarity and resolution of the resulting
models, RMS error statistical analysis was utilized to
filter out noise and data artifacts prior to processing
(Miller et al., 2008). Post-inversion datasets with high
RMS error values were discarded, most likely due to
poor electrode-ground contact. Rucker et al. (2011)
define absolute error as the absolute deviation between
two repeated measurements. Each inversion included
at least seven iterations, and only those with RMS errors
below 10.0 were retained for interpretation.
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Table 1, ERT surveys with RMS error lower than 10%.

Profile Length Data RMS Profile Length Data RMS
(m) Points  Error (m) Points  Error
(%) (%)
ERT-1 300 371 8.3 ERT-9 300 533 4.4
ERT-2 300 548 2.5 ERT10 300 554 4.3
ERT-3 300 510 6.1 ERT11 300 410 8
ERT-4 300 527 6.2 ERT12 300 518 8.1
ERT-5 300 521 4 ERT13 300 379 7.7
ERT-6 300 527 4 ERT14 150 119 7.2
ERT-7 300 545 2.4 ERT15 150 99 9
ERT-8 150 117 6.2 ERT16 150 135 6.2

Results and Discussion
ERT Profiles

The 2D data was inverted into resistivity models,
showing both lateral and vertical subsurface resistivity
distribution. The models revealed a wide variation of
subsurface information. A total of 16 profiles, covering a
combined length of 4,100 meters, were surveyed during
the investigation. The electrical resistivity survey was
carried out along different profile lines in various
hydropower components including the reservoir area,
adit tunnels, headworks area, intake site, powerhouse,
penstock, and tunnel axis (Figure 7). The models reveal
a spectrum of resistivity zones, ranging from low to
relatively high. Geological materials are categorized
based on their resistivity values, with fresh bedrocks,
fresh to moderately weathered bedrocks, and
weathered bedrocks with minimal fractures.
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Surge Shaft, Aeration Tunnel, and Powerhouse

Figure 7, Drawings showing ERT alignments in the
surveyed area.

The four ERT profiles conducted in the headworks
area reveal consistent subsurface patterns with notable
local variations. All profiles show a clear distinction
between an overburden layer and underlying fractured
bedrock, with varying degrees of saturation and
resistivity (Figure 8). ERT-1, conducted along the left
bank of the Mugu Karnali River, displays four layers,
including thin colluvium and alluvium overlying
saturated fractured bedrock with resistivity variations
likely reflecting differences in lithology and groundwater
presence; field observations support this, with
alternating granitic gneiss, banded gneiss, and
quartzite. In contrast, ERT-2 and ERT-3, both on the right
bank, depict simpler two-layered structures with a
moderately thick overburden (3-10 m in ERT-2 and 7-46
m in ERT-3) and low-resistivity, saturated fractured
bedrock below, suggesting more uniform subsurface
conditions in these locations. ERT-4, carried out along
the right bank of Puwa Khola, shows greater lateral
variation in the overburden; saturated alluvium
dominates the left side (2-8 m thick), while colluvium
with mixed resistivity occupies the right (2-12 m thick).
Like the others, ERT-4 reveals a fractured, saturated
bedrock beneath the overburden. Overall, the profiles
consistently identify fractured bedrock as the
foundational layer, while variability in overburden
thickness, resistivity, and saturation reflect changes in
topography, lithology, and proximity to the river.

The ERT profiles ERT-5 through ERT-8, conducted
along the right bank of the Riusa Khola and surrounding
tunnel zones, consistently delineate a three-layered
subsurface structure, albeit with noticeable lateral
variations in resistivity and lithology (Figure 9).
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Figure 8, 2D resistivity models for lines 1-4 at the proposed powerhouse, showing lateral and vertical subsurface
resistivity variations (5 m inter-profile spacing).
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ERT-5, aligned with the headrace tunnel, reveals a 4-
11 m thick, dry colluvial overburden, characterized by
relatively high resistivity. This layer is underlain by
massive granitic gneiss with schist partings, displaying
high resistivity values indicative of intact rock
conditions. Toward the end of the profile (chainage 182—-
278 m), the resistivity markedly decreases, suggesting a

transition to fractured and weathered bedrock,
potentially influenced by seepage or structural
weaknesses.

ERT-6 and ERT-7, obtained along the surge shaft
hillslope, exhibit a broadly similar subsurface
configuration. Both profiles show a thin -to moderately -
thick colluvial cover of approximately 2-8 m in ERT-6 and
2.5-6 m in ERT-7, overlying moderately weathered
bedrock of 11-17 m and 6-16 m thick, respectively. The
lowermost layers in both profiles correspond to
alternating schist and quartzite horizons, inferred from
contrasting resistivity patterns. The deeper section of
ERT-6 (chainage 68-255 m) shows relatively low
resistivity, reflecting a predominance of schistose
material, whereas ERT-7 exhibits higher resistivity,
suggesting a greater quartzite content.

ERT-8, located along the aeration tunnel portal,
though shorter in length (150 m), also reveals a clear
three-layer structure. The uppermost overburden is very
thin (~1 m), followed by a moderately weathered
bedrock layer (5-11 m thick), and a deeper low-
resistivity zone interpreted as interbedded schist and
quartzite.

Overall, the ERT-5 to ERT-8 profiles depict a
consistent stratigraphic framework—an upper colluvial
cover underlain by weathered rock and then more
competent bedrock. However, the resistivity variations
across the profiles reflect local lithological
heterogeneity = with  quartzite-dominated  zones
exhibiting higher resistivity, while schist-rich sections
are associated with lower values, implying differences
in permeability and degree of fracturing.

ERT-9, ERT-11, and ERT-12, each 300 m long and
conducted along the penstock alignment near Lumsa
Village on the left bank of the Mugu Karnali River, reveal
layered but variable subsurface configurations with
differing degrees of complexity (Figure 10).

ERT-9 displays a typical three-layer sequence
comprising of (i) a heterogeneous colluvial layer (2-7 m
thick) with variable but generally high resistivity; (ii) a
moderately weathered bedrock zone (5-27 m thick); and
(iii) a deeper unit characterized by alternating quartzite
and garnet schist, inferred from contrasting resistivity
values.

ERT-11 shows a two-layer section, consisting of a
thick, variable overburden (2-25 m) composed of loose,
unconsolidated materials with sporadic boulders,
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underlain by a fractured and saturated bedrock
composed of schist and quartzite. A sharp drop in
resistivity from chainage 83 m onward marks highly
fractured zones, possibly linked to faulting or increased
water content.

ERT-12, the most geoelectrically complex of the
three, delineates four distinct layers: (i) an upper
heterogeneous alluvial layer (up to 27 m thick); (ii) a thin
colluvium (<4 m); (iii) a moderately weathered bedrock
(3-14 m thick); and (iv) a deep, saturated bedrock layer
with low resistivity (<4300 Q-m), interpreted as
interbedded schist and quartzite.

Collectively, these profiles confirm the presence of
colluvial and weathered/fractured bedrock sequences
along the penstock alignment. However, ERT-12 is
unique in capturing a deeply saturated bedrock zone
beneath thick alluvium, in contrast to the relatively
simpler two-layer configuration of ERT-11 and the
resistive, quartzite-rich bedrock in ERT-9.

ERT-13 through ERT-16, carried out across the
turbine foundation zones near the powerhouse area on
the left bank of the Mugu Karnali River, predominantly
indicate a two-layered subsurface system (Figure 11).
This structure comprises an upper alluvial overburden
and an underlying fractured, saturated bedrock.

ERT-13 (300 m) and ERT-14 (150 m), both aligned
along the upstream turbine foundations, reveal thick
alluvial overburden dominated by boulder- and gravel-
rich sediments, ranging from 8-30 m and 4-12 m,
respectively. Beneath this layer lies a fractured schist-
quartzite bedrock, interpreted from moderate to low
resistivity values. ERT-14 demonstrates a relatively
uniform overburden distribution with localized resistive
anomalies, likely indicating embedded boulders or
compact gravel zones.

Similarly, ERT-15 and ERT-16 (each 150 m long)
exhibit comparable subsurface conditions,
characterized by an upper alluvium layer with
heterogeneous resistivity reflecting variable grain size
and moisture content. The underlying moderately to
highly fractured bedrock shows variable resistivity
patterns consistent with alternating schist and quartzite
layers.

Across all four profiles, the overburden thickness
varies from 2 to 16 m, while bedrock occurs at shallow
to moderate depths (approximately 4-26 m). Despite
localized resistivity contrasts, the overall interpretation
indicates a consistent geological framework within the
powerhouse site, comprising of a coarse-grained, thick
alluvial cover resting upon fractured and partially
saturated bedrock, with spatial variations controlled
primarily by lithology and degree of fracturing.
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Figure 9, 2D resistivity models for lines 5 - 8 at the proposed powerhouse, showing lateral and vertical subsurface
resistivity variations (5 m inter-profile spacing).
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Figure 10, 2D resistivity models for lines 9-12 at the proposed powerhouse, showing lateral and vertical subsurface

resistivity variations (5 m inter-profile spacing).
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Figure 11, 2D resistivity models for lines 13-16 at the proposed powerhouse, showing lateral and vertical

subsurface resistivity variations (5 m inter-profile spacing).
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Conclusions

The results of ERT survey demonstrate its effectiveness
as a reliable geophysical method for resolving upper
crustal heterogeneities and delineating subsurface
geological features in rugged terrain. The field
instrumentation, designed to support synchronous
voltage measurements across extensive multi-
electrode arrays, enabled resistivity profiling over
distances exceeding 4 km. The rocks around the project
area have three local lithological units such as the
schist, quartzite and gneiss.

Based on the resistivity values, the uppermost layer
is characterized by relatively low to moderate resistivity
(20-400 Q-m), corresponding to unconsolidated
colluvial and alluvial sediments with thicknesses
ranging from 1 to 46 m. Beneath this, an intermediate
resistivity  zone (1,000-4,500 Q-m) represents
moderately weathered to fresh bedrock, typically 3 to
27 m thick, composed predominantly of schist,
quartzite, and granitic gneiss. The basal layer exhibits
variable resistivity signatures (<1,000 Q-m) associated
with fractured and saturated competent bedrock,
occurring at depths between 4 and 30 m, and reflecting
local lithological heterogeneity and groundwater
presence.

Moreover, the surveyed area is generally suitable for
the proposed hydropower components; however,
additional ground-truth investigations such as borehole
drilling, in-situ testing, and detailed geotechnical
mapping would further validate the ERT interpretations
and provide greater assurance for long-term structural
stability.
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